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A description is given of the parallelization algorithms and results for two codes used ex- 

tensively to model edge-plasmas in magnetic fusion energy devices. The codes are UEDGE, 

which calculates two-dimensional plasma and neutral gas profiles, and BOUT, which cal- 

culates three-dimensional plasma turbulence using experimental or UEDGE profiles. Both 

codes describe the plasma behavior using fluid equations. A domain decomposition model is 

used for parallelization by dividing the global spatial simulation region into a set of domains. 

This approach allows the used of two recently developed LLNL Newton-Krylov numerical 

solvers, PVODE and KINSOL. Results show an order of magnitude speed up in execution 

time for the plasma equations with UEDGE. A problem which is identified for UEDGE is 

the solution of the fluid gas equations on a highly anisotropic mesh. The speed up of BOUT 

is closer to two orders of magnitude, especially if one includes the initial improvement from 

switching to the fully implicit Newton-Krylov solver. The turbulent transport coefficients 

obtained from BOUT guide the use of anomalous transport models within UEDGE, with 

the eventual goal of a self-consistent coupling. 
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I. Introduction 

The goal of this work is to develop the first numerical codes for simulation of edge 

plasmas for magnetic fusion energy (MFE) d evices that exploit the power of parallel com- 

puters. Understanding edge plasmas is central to the problems of high heat flux from 

plasma power exhaust, adequate helium removal, and maintaining sufficient edge temper- 

ature, all recognized as critical issues for magnetic fusion reactors. Proper assessment of 

these issues requires detailed computer codes. The last several years has witnessed a period 

of unprecedented growth in the computer power available for modeling physical problems. 

To utilize this computational power, one needs to make the paradigm shift from coding 

for single-processors to coding for multi-processor computers. For codes with explicit time 

advancement, this shift is relatively straightforward because only local quantities enter ex- 

pressions for the solution at each time step. However, many physical problems, including 

fusion edge plasmas, contain various phenomena that yield a wide range of time scales 

which render the equations describing them “stiff” in the numerical sense. Here, implicit 

methods are especially useful, but implicit methods are inherently nonlocal spatially and 

thus present a bigger challenge for parallelization compared to explicit methods. 

The simulation of edge-plasmas has many time scales because of the simultaneous mod- 

eling of ion and electron transport along and across a confining magnetic field, together 

with neutral particle processes. Here we describe the parallelization of two codes that sim- 

ulate the edge-plasma region: UEDGEr solves for the two-dimensional (2-D) profiles of a 

multi-species plasma and neutrals given some anomalous cross-field diffusion coefficients, 

and BOUT2 solves for the three-dimensional (3-D) turbulence that gives rise to the anoma- 

lous diffusion. These two codes are thus complementary in solving different aspects of the 

edge-plasma transport problem; UEDGE needs BOUT’s turbulent transport results, and 

BOUT needs UEDGE’s plasma profiles. Each code can take from a day to weeks on single- 

processor computers for large problems. An essential step to coupling these calculations 

is speeding up their individual execution times since many iterations may be needed for a 

consistent solution. 

This parallelization work benefits greatly from the development of two parallel implicit 

solvers by Hindmarsh and Taylor :3 PVODE solves a system of time dependent ordinary 
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differential equations, and KINSOL solves a system of nonlinear equations typically aimed at 

finding steady-state solutions. The serial versions of these Newton-Krylov solvers, VODPK4 

and NKSOL,5 have been used very productively for the serial version of UEDGE. However, 

for such solvers to work well for UEDGE, our experience on serial computers shows that 

the system of equations must be well preconditioned. The preconditioning step is to solve a 

closely related problem in a more efficient but approximate manner which, in effect, serves as 

a guess for the final solution. 4y5 Thus, part of our work for UEDGE focuses on development 

of a parallel preconditioner based on a domain decomposition model. In addition, we have 

collaborated with Hindmarsh and Taylor3 to help debug and test interface routines that 

allow us to run UEDGE, written in FORTRAN, with PVODE and KINSOL, written in C, 

on a variety of parallel computer platforms from the massively parallel T3E computer to 

shared-memory workstations with multiple processors (SUN and DEC). This aspect of our 

work demonstrates, for a complex problem, how one can reuse existing FORTRAN coding, 

and with moderate extensions, utilize recently developed implicit parallel solvers. 

Another element of portability is provided by implementing message passing between 

multiple processors by using the MPI package. 6 This package is available on many different 

platforms and allows one to utilize either shared memory or individual processor memory 

without changing the code. With MPI, one can now use processors on one computer or a 

network of computers. Also, the serial version of UEDGE has been made very productive 

through the use the BASIS system, ’ but this programming and computing environment 

is not available on all computer platforms. This problem has been alleviated by recent 

development by Grate” of a conversi on capability from BASIS to the more widely available 

PYTHON system,lO and application of the conversion to UEDGE by Yang.r2 

The computational time required for the BOUT code exceeds that of UEDGE because 

BOUT simulates short to moderate wavelength turbulence in 3-D. We have made more 

than an order of magnitude gain in speed for BOUT by converting to the fully implicit 

solver PVODE even on a single processor (the single processor version is called CVODE). 

In contrast to UEDGE which seeks steady-state solutions, it is found that the large BOUT 

speed up is possible even without a preconditioner, in part because one needs to maintain 

a time step to resolve the fluctuation time-scales of the turbulence. However, we believe 

BOUT could take even larger time steps with the aid of a proper preconditioner. To 
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utilize parallel computers, we convert the serial implicit version of BOUT to a parallel 

domain-decomposition scheme similar to that of UEDGE which can use many processors 

simultaneously. The parallel version of BOUT also uses MPI for portability. 

The plan of the reports is as follows: In Sec. II, the geometry and basic equation for the 

edge-plasma problem are given. The domain decomposition model used for UEDGE and 

BOUT is described in Sec. IIC. The results for the UEDGE parallelization are shown in 

Sec. III. The BOUT results from the fully implicit solver and parallelization are given in 

Sec. IV. The conclusions are summarized in Sec. V. 

II. Equations and Geometry 

A. Basic equations 

The basic models in the UEDGE and BOUT codes are obtained from the plasma fluid 

equations of continuity, momentum, and thermal energy for both the electrons and ions as 

given by Braginskii. I3 The continuity equations have the form 

$+v*( nepe,;) = se”,,; (1) 

where n,,; and v,,i are the electron and ion densities and mean velocities, respectively. The 

source term 27:; arises from ionization of neutral gas and recombination. I 

The momentum equations are given by 

nm,C% + me,ine,ive,i * ‘tJVe,i = -VPe,i + qn,,i (E + v,,; x B/c) - F,,; - R,,; + SET. (2) 

Here m; is the ion mass, Pe,; = n,,;T,,; is the pressure with T,,; being the temperatures, q 

is the particle charge, E is the electric field, B is the magnetic field, c is the speed of light, 

F,,; = V .I’&; is the viscous force, and R,,; is the thermal force.13 The source Sre contains 

a sink term -nm;,,viSip, which arises if newly created particles have no drift motion. 7 

The ion and electron energy equations can be written in the form 

3 aT,; 3 
s”$ + snve,i * VTe,; + Pe,iV * v,,; = -V * g,,; - II,,; . Vv,,; + Q~,;. (4 

Here, q,,i are the heat fluxes, and Qe,; are the volume heating terms.13 
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In their general three-dimensional form, the six equations given above represent ten 

separate partial differential equations for n,, n;, v,, v;, T,, and T;. UEDGE and BOUT 

use somewhat different assumptions to reduce the complexity of their models. The largest 

difference as discussed in Sec. B is that UEDGE assumes symmetry in a third dimension, 

usually the toroidal direction for a fusion device, whereas BOUT allows fluctuations to have 

variations in all 3 spatial dimensions even though the equilibrium profiles are toroidally 

symmetric. 

B. Geometry 

Both UEDGE and BOUT are written in general coordinates that can be adopted to a 

slab, cylinder, or torus by the use of the appropriate metric coefficients. For MFE fusion 

devices, we have been most interested recently in toroidal devices with an emphasis on 

tokamaks. The region occupied by the edge plasma for the poloidal plane of a tokamak 

with a single-null divertor is shown in Fig. 1. The long, sometimes closed lines of the 

mesh represent poloidal magnetic flux surfaces in which the magnetic field vector lies. For 

tokamaks, the strongest magnetic field component is in the toroidal direction, out of the 

plane of the figure. 

UEDGE and BOUT use the the poloidal flux surfaces as one spatial coordinate. The 

second spatial coordinate is often the curves normal to the flux surfaces also shown in 

Fig. la, but a nonorthogonal mesh is sometimes used to form the mesh along material 

surfaces at the boundary. For UEDGE, this specifies the 2-D coordinate system and all 

quantities are assumed uniform in the third direction. However, BOUT allows fluctuations 

to arise in the third toroidal direction, even though the equilibrium is uniform. Here, a 

segment of the torus is simulated as shown in Fig. lb which is assumed to be periodically 

replicated to fill out the full torus. Thus, the wavelength of the longest toroidal mode is set 

by the length of the toroidal segment used. 

The numerical discretization schemes used by UEDGE and BOUT are similar in the 

two dimensions in the poloidal plane. UEDGE uses a conservative finite-volume method 

and BOUT uses a finite difference method including a fourth-order spatial discretization 

for the nonlinear E x B convective velocity terms. 
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C. Domain Decomposition Model 

Because UEDGE and BOUT use the same poloidal mesh, this region can be divided 

into domains on parallel computers where separate processors can solve a local problem. 

However, for the toroidal edge-plasma problem, there are a set of natural interior boundaries 

that need to be identified and accommodated for efficient decomposition. The regions 

delineated by these interior boundaries are shown in Fig. 2 for both the poloidal geometry 

and the corresponding mapping to a logically-rectangular domain. Information needs to be 

passed between cells that touch one of the dotted line between the private-flux and the core 

regions to the cells along the other dotted line, and vice versa. These interior boundaries 

are used to account for the periodic boundary conditions used within the core region and 

the continuity-of-flux condition from the private-flux region 3 to private-flux region 4. 

If the selection of the domains is such that the boundaries of major regions l-4 in Fig. 2 

always comprised of boundaries of the domains, then the finite difference representation in 

a given domain can be entirely local. Such a domain decomposition is shown in Fig. 3a 

where sixteen domains are used for the poloidal plane. 

The information needed to form the local finite-difference approximations to the deriva- 

tives at the boundary of the domains is provided by passing the variable data between 

processors (domains) via MP16 in order to fill the guard cells that surround each domain 

shown in Fig. 3b. Notice that data needed in a guard cell is not necessarily from the ad- 

jacent domain; e.g., the guard cell data for domain 0 in Fig. 3a comes from domain 3. 

These guard cells do not contain variables that are advanced for each domain, but rather 

contain a copy of this information from another processors. The only exception to this rule 

is for UEDGE which uses exterior guard cells to specify boundary conditions; but here the 

boundaries conditions are local, so no message-passing between domains is required. 

The domain decomposition plays two roles. First, in order to utilize the implicit PVODE 

and KINSOL solvers,’ we must divide the physical space of our codes in this manner, where 

each processor has all of the information required to solve the local problem. Here we 

collaborated with Hindmarsh and Taylor to help debug and test interfaces (often called 

wrappers) between their solvers written in C and FORTRAN application programs like 

UEDGE that will run on a variety of parallel platforms. Because these Newton-Krylov 
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implicit solvers use a local, finite-difference approximation to the Jacobian, there is no 

need to invert a global matrix. The second use of the domain decomposition model is 

that it provides the basis for the preconditioning algorithm which is required by UEDGE. 

Here the full set of Jacobian elements can be efficiently generated in parallel using all 

of the processors. However, to obtain a preconditioner, one needs to approximate the 

inversion of the Jacobian which is more nonlocal than the Krylov approximation. To do 

this, we perform an approximate LU decomposition of the Jacobian using ILUT7 routines 

independently on each processor. This procedure of not including coupling between domains 

at the preconditioning level is often referred to as the additive-Schwartz method.’ 

The manner in which UEDGE utilizes the solvers PVODE and KINSOL can be most 

succinctly explained by the diagram in Fig. 4. On the left is the main UEDGE calculation 

of the finite-difference equations that yield the “right-hand side” of the evolutionary equa- 

tions for each variable. In addition, UEDGE provides a local preconditioning Jacobian on 

each processor by approximating derivatives with finite-difference quotients. This operation 

should not be confused With the finite-difference approximation used by the PVODE and 

KINSOL Krylov solvers. In the central column of the diagram is the wrappers mentioned 

in the previous paragraph which pass data from the Fortran UEDGE code to the C solvers, 

and vice versa. Finally, on the right is the C solvers, PVODE or KINSOL, themselves. This 

section required no development on our part, and can thus be considered as “off-the-self” 

software. Note that the foregoing model is replicated for all domains or processors. Com- 

munication between processors as required to fill that guard cells is shown by the “mpi send 

and receive” boxes in Fig. 4. 

The parallel model for BOUT is very similar to that just described for UEDGE, except 

that BOUT is written in C and thus requires no extra interface routines to utilize the C 

solvers. Since BOUT must follow the time-dependence, only the PVODE option is used 

here. Also, as mentioned earlier, BOUT works surprisingly well without a preconditioner. 

Some work has been done on testing preconditioners for even more improvement, but more 

development is needed here. 
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III. Implementation and Results for UEDGE 

A. Implementation 

The 2-D plasma transport equations used in UEDGE come from a reduction of those 

presented in Sec. IIA for the parameters of the edge plasma. This results in five equations 

of the variables of ion density, n;, ion parallel velocity, 011, separate electron and ion tem- 

peratures, T, and T;, and the electrostatic potential, 4. In addition, impurity species can 

be included which have their own density and parallel velocities. Furthermore, neutral gas 

species are present which can be described by various models; the simplest is a diffusion 

model, where the neutral density, nn, obeys the continuity equation 

(4 

Here the neutral velocities, w,,,~, are taken from a diffusion approximation using the charge- 

exchange collision frequency between ions and neutrals, and the source and sink terms on 

the right-hand side represent recombination and ionization with rate coefficients (a,~,) 

and (criw,), respectively. We find that this neutral gas equation plays a major role in the 

parallelization work for UEDGE, a point we will return to in the results section. 

With UEDGE, we seek steady-state solutions in as efficient a manner as possible, while 

still retaining the options to simulate time dependent phenomena when needed. Using large 

time steps, or performing nonlinear iterations to steady state with no time step requires 

the use of a good preconditioner. The most effective preconditioner is forming the full 

Jacobian matrix by finite-difference quotients as mentioned previously. We now have two 

options for the parallel UEDGE, either using an algorithm developed within UEDGE, or 

because each domain with guard cells is now self-contained, we can use the band-block- 

diagonal preconditioners PVBBDPRE and KINBBDPRE supplied as part of the PVODE 

and KINSOL routines, respectively.3 

To implement the domain decomposition model, we have written routine that automat- 

ically divides the global mesh in a manner that respects the “natural” boundaries shown 

in Fig. 2. One can specify the number of sub-domains in each of these regions, and the 

algorithm works to optimize the load balancing by having any imbalance in the number of 

equations per domain being relegated to a minimum number of processors which do less 
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work than the average. In this way, most processors do not need to wait for the few unbal- 

anced ones to finish. Usually, we strive for complete load balancing by a proper choice of 

mesh sizes and number of domains. The newly written routine also sorts through the index- 

ing for the guard cells and provides a map to specify which processors must communicate 

boundary data to each other. A set of routines were developed that deal with passing data 

from the master processor to domain processors. This data includes the initial guess to 

the global solution, the global geometrical data, and the mapping index for the guard cells 

needed for each domain. A similar routine is used to gather the data from all the processors 

into a global solution at the end of the run. Finally, another set of message-passing routines 

was constructed to refresh the guard cell date at the appropriate times during the Jacobian 

and Newton-Krylov steps. 

B. Results 

We have run UEDGE on the T3E-600 using the 16 domain configuration shown in Fig. 3 

for the full DIII-D tokamak geometry in Fig. la. The execution time normalized to that for 

one processors is presented in Fig. 5. Here PVODE was used to run to steady state with the 

plasma equations and two different preconditioners where used, the case marked X being 

PVBBDPRE, and the + point being the internal UEDGE preconditioner. In the table below 

the figure, the tabulated data shows the number of function (or right-hand side) evaluations, 

the number of preconditioners, the normalized time, and the ideal time. Although the speed 

of the calculation depends somewhat on the preconditioner used, experience with various 

approximate preconditioners on serial computers indicates that both are working well; errors 

in the preconditioner typically result in an inability to obtain a solution with UEDGE. 

The difference in the speed up results from the two preconditioners in Fig. 5 is due pri- 

marily to the frequency with which they are updated. l4 Note from the table in Fig. 5 that the 

PVBBDPRE case (labeled X) h as only about l/3 of the preconditioner evaluations compared 

to the + data point with the UEDGE preconditioner. As a consequence, the X data point 

has almost twice the number of overall function evaluations from PVODE. Thus, the results 

from the two preconditioners indicate the sensitivity of the trade-off between more frequent 

preconditioner evaluations (and LU decomposition), and fewer Newton-Krylov iterations as 

reflected in the function evaluation count. The extra work required because the precon- 
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ditioner is only solved locally on each domain and thus does not include domain-coupling 

information is reflected in the lower number of function and preconditioner evaluations for 

the 1 processor base-case. 

While it is encouraging to obtain nearly an order of magnitude speed up for the plasma 

equations in UEDGE, the relatively simple gas equation shown by Eq. (4) proved more 

difficult. This problem has been traced back to the highly anisotropic mesh shown in 

Fig. 1.i5 This mesh is chosen to best represent the plasma which flows rapidly along the 

long flux surfaces and transports slowly across the magnetic flux surfaces owing to magnetic 

confinement. However, the gas evolving from the divertor plates does not experience a 

magnetic force and is not preferentially confined to the flux surfaces. We have studied 

this problem in some detail for a simple gas diffusion problem outside the actual tokamak 

geometry and find the same difficulty. We believe that providing more overlap information 

in the preconditioner should allow this problem to be overcome, such as using a Schur 

complement method. ‘J6 Also, when coupling to a Monte Carlo neutrals code for the gas 

description, l7 this issue goes away, and one gets the added benefit that Monte Carlo codes 

parallelize very well. We are presently working on this parallel coupling. 

IV. Implementation and Results for BOUT 

A. Implementation 

For edge-plasma turbulence, the application of a fluid model is reasonable in part be- 

cause of the low temperature and high collisionality. While the unstable modes can have 

wavelengths short compared to the scale lengths of equilibrium profiles, the dominant modes 

have perpendicular wavelengths which are larger than the ion gyroradius, ps, consistent with 

a fluid approach. Thus, it is appropriate to use the Braginskii fluid equations as presented 

in Sec. IIA. By scaling arguments, the full set of fluid equations can be reduced to a six- 

variable set for the electrostatic potential, 4, magnetic vector potential, Ali, plasma density, 

n;, electron and ion temperatures, T, and T;, and ion parallel velocity 0~11. The parallel 

current, jll, and perpendicular vorticity, a, are intermediate variables used to help solve 

the system. The equations for all of the variables time-evolutionary equations, except for 
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4 and Ali. These potentials satisfy similar equations: 

VQ = w 

V2,A,, = 

(5) 
(6) 

The 4 potential equation is not obtained from Poisson’s equation, but rather from the 

quasineutrality condition and the current continuity equation. Here VI refers to the Lapla- 

cian operator in the directions perpendicular to the magnetic field. The solution to this 

rather simple looking equation that has important consequences for the parallel version of 

BOUT. 

In order to efficiently simulate turbulence with short perpendicular wavelengths com- 

pared to parallel wavelengths (i.e., for wavenumbers /ill < Icl), we choose field-line-aligned 

ballooning coordinates, IC, y and Z, which are related to the usual flux coordinates $J,, 

0, and 9 by the relation x = $ - $s, y = 8, z = cp - Jq(x, y)dy. The partial deriva- 

tives are: d/d+ = d/8x - (J aq/6’$,)a/az, d/d8 = d/ay - qd/dz, d/dp = 8182, and 

VII = (B,/hB)d/dy. Th e magnetic separatrix is denoted by $ = $J~. Here the key balloon- 

ing assumption is (alay/ << (qb’/dz( and d/d0 N -qa/az. In this choice of coordinates, y, 

the poloidal angle, is also the coordinate along the field line. 

In the most general case, the solution to Eqs. (5-6) requires a three-dimensional solver 

since one of the perpendicular directions is a composite of the poloidal and radial directions. 

However, utilization of the ballooning assumption with short toroidal wavelengths reduces 

the potential equations to two dimensions in the radial and toroidal directions. Since the 

potential equations then do not depend on the poloidal coordinate, it is efficient to divide 

the parallelization domain in this direction. The technique for solving Eqs. (5-6) is to Fast- 

Fourier Transform (FFT) in toroidal direction and finite difference in the radial direction. 

Because these potential equations are linear, the solution for 4 and All only requires a 

tridiagonal inversion in the radial direction and the FFT; both operations are localized to 

each poloidal domain. 

To study realistic problems, BOUT obtains magnetic geometry data and plasma profiles 

from global data files written by UEDGE. Th e magnetic data comes ultimately from an 

MHD equilibrium code and the plasma background profiles can be from a UEDGE solution 

or an analytic fit to experimental data. On a parallel machine, a pointer is set so that each 
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processor only reads a subset of the data needed for its domain. Similarly, each processor 

writes and reads its own dumpfile for the data in its domain which can be used to restart 

or continue the problem. Presently, a restarted problem needs to use the same number of 

processors as the original problem. For post-processing, another program collects the data 

from a set of the dumped data files generated by BOUT, and generates a single file for the 

global solution. 

B. Results 

The first step to increase the speed of the BOUT code was to convert its ordinary 

differential equation (ODE) solver which advances the spatially discretized equations in 

time. Originally, an Adams predictor-corrector scheme was used. We then changed the 

time advancing algorithm to the Newton-Krylov method by using CVODE and the parallel 

PVODE. These new solvers also have an option for the Adams functional iteration method 

which is similar, but more implicit than the original predictor-corrector scheme. The com- 

parison between the Newton-Krylov and Adams functional iterations on the allowable time 

step is dramatic as shown in Fig. 6 which gives the size of the time step as the simulation 

evolves in time from its initial conditions. At the beginning, both methods show similar 

time steps, but soon, the Krylov method is able to expand its time step by a factor of 50 

compared to the Adams method for the same accuracy. In fact, this simulation includes 

the shear in the magnetic equilibrium near the X-point which was a problem that we could 

not integrate successfully with the previous predictor-corrector method. Thus, using the 

Newton-Krylov method has become an essential part of our generalized BOUT simulations. 

We have also found the same type of improvement of the Newton-Krylov method over the 

Adams functional iteration method for a simple 2-D, 2-species reaction-diffusion problem. 

In order to extent these improvements to parallel machines, we developed a parallel 

version of BOUT based on domain decomposition as described in Sec. IIC. Because the 

potential equations, Eq. (5-6)) are independent of the poloidal dimension in the ballooning- 

coordinate representation, the most effective choice of domains are those which segment 

the poloidal direction. Thus, in referring to Fig. 3, this would consist of removing the 

horizontal dotted lines, and combining domains (0,4,8,12), (1,5,9,13), etc. Using these 

poloidal domains, the solution of Eqs. (5-6) can be done entirely on each domain without 
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regard to the other domains. Then, only message-passing is required to fill the guard cells 

of each domain in order to use PVODE. 

The effectiveness of the parallel Bout on a SUN Wildfire system is shown in Fig. 7. This 

parallel system has 16 processors per machine, 3 machines, and shared memory. Here and 

elsewhere, the speed up time refers to wall-clock time. Note that the speed up is nearly linear 

on one machine, with a small degradation at 15 processors (15 because of load balancing for 

this given problem). However, when going to 30 processors, the speed up drops dramatically. 

This is caused by either slowing message passing between machines or non-optimization of 

scheduling, issues which are being investigated. Also, we have used MPICH routines, but 

the use of SUN MPI may give improved performance on this SUN system. Nevertheless, 

the speed up with 15 processors is a factor of 13, which is encouraging. Note that a point 

is also shown for the DEC cluster at LLNL for 1 processor. BOUT is somewhat faster than 

the SUN cluster for our problem using 1 processor, but more significantly, it is quite slow 

in the parallel mode because of scheduling issues which prevent us from obtaining even 10 

processor on a given machine for a sustained period of time. 

When this same problem is run on the T3E-900 at NERSC, one can more effectively 

study the behavior from 15 to 60 or more processors, and the results, shown in Fig. 8, are 

even more impressive. One can see that the speed up is actually super-linear over the range 

considered when normalized to the case using 5 processors which is the smallest number of 

processors we could fit this problem into. The super-linear behavior, or off-set linear at high 

processor number, is most likely caused by the different levels of CPU memory available on 

the T3E. For the 5 PE case, the memory required per processor is significantly larger than 

that available in the fast cache memory, while for the 60 processor case, a larger percentage 

of the calculation can reside in the fast cache memory. The division of work for the 60 

processor case is 81% for evaluating the BOUT physics equations, 12% for internal PVODE 

calculations, 6% for interprocessor MPI communications, and 1% for other overhead costs. 

The load balance between processors is very good with only a -1% variation. 
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V. Conclusions 

We have succeeded to develop parallel versions of two workhorse codes to simulate edge 

plasmas in MFE devices: UEDGE for 2-D transport and profile evolution, and BOUT for 

3-D turbulence. Both codes solve the magnetized plasma fluid equations, with UEDGE 

focusing on long-time development of the plasma profiles and BOUT dealing with short- 

time turbulence which causes anomalous radial transport. A similar domain decomposition 

model is used to achieve the parallelization where we then utilize the recently developed 

LLNL Newton-Krylov solvers PVODE and KINSOL. 

The parallelization of UEDGE has allowed us to obtain nearly an order of magnitude 

speed up in execution time for the plasma equations on 16 processors.15 Here we were able to 

reuse almost all of the original FORTRAN coding, although we did have to create a BASIS- 

free version of the code that could run on the T3E; with the automated conversionllll’ to 

PYTHON, this should not be needed in the future. We developed a domain decomposition 

model including an automatic decomposition routine and a number of message passing 

routines, plus tested and debugged interface routines with the PVODE and KINSOL solvers. 

The fluid gas equations do not parallelize as effectively as the plasma equations which 

we have identified as caused by the anisotropic mesh and lack of domain overlap in the 

preconditioner. There are overlap methods which should be assessed for this problem. 

Also, the coupling of the parallel plasma equations with a parallel neutral Monte Carlo 

code looks promising. 

The results for the BOUT 3-D code have exceeded our initial expectations. The conver- 

sion to the Newton-Krylov solver3 has produced a code which runs as much as 50 times faster 

compared to a Adams functional iteration method. In fact, the previous predictor-corrector 

method we used, which is even simpler than the Adams functional iteration method, and 

could not be practically used for the simulations which include X-point shear from the 

equilibrium magnetic field. These simulations are very important for understanding the 

behavior of present experiments and designing future devices.lsrlg 

The parallelized version of BOUT continues to work well with a poloidal domain decom- 

position, giving a factor of 13 speed up for 15 processors on the SUN Wildfire and a very 

encouraging factor of 69 speed up for 60 processors on the T3E-900. The degradation on the 
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Wildfire system at 15 processors may be do to inefficient message passing by using MPICH 

and not SUN MPI; this is presently be checked. The super-linear speed up on the T3E is 

likely due to the better utilization of cache memory for the larger number of processors. 

Most recently, we have extended this case to 120 processor on the T3E, and find the data on 

the same off-set linear curve. The large speed up of BOUT gives real optimism concerning 

coupling UEDGE and BOUT. Previously, BOUT was very time consuming, which made 

such coupling seem far off; now it is a real possibility. 

There are two areas where more short-term improvements may be realized with BOUT 

performance. One is to extend the domain decomposition to the radial direction as in 

UEDGE. This will allow more domains as the number of allowable toroidal modes increases. 

Here we will deal with the coupling of the potential equations across the radial domains by a 

parallel tridiagonal solver” or an Newton-Krylov solver using a preconditioner. The second 

area being focused on is to increase the time step of the PVODE integration further by 

providing a preconditioner for the time dependent equations. This gain does have limitations 

in that we must still properly resolve the turbulence. Some simple preconditioners where 

tried without much improvement, but we know from our experience with UEDGE that 

preconditioners can be effective for the equations set we are using, and this warrants further 

investigation. 
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Figures 

FIG. 1. The toroidal tokamak geometry simulated by the UEDGE and BOUT codes. In 

a), the poloidal plane plot shows the 2-D edge region simulated by UEDGE and the 

mesh used which has one coordinate based on magnetic flux surfaces as provided by an 

MHD equilibrium code. In addition to simulating the poloidal annulus in a), BOUT 

also allows fluctuations to have toroidal variations which fit periodically into the toroidal 

segment shown from the top view in b). Thus, inclusion on longer toroidal wavelength 

modes requires using a larger toroidal segment at increase computational cost. 

FIG. 2. The poloidal plane is divided into 4 main regions for the domain decomposition 

model, each of which can be further subdivided. The 4 regions are mapped into the 

rectangular geometry shown in the lower part of the figure by opening the poloidal 

configuration along the dotted line. 

FIG. 3. Division of UEDGE geometry into 16 regions is shown in a), while in b) more detail 

of mesh is shown within the domains and the overlapping guard cells. 

FIG. 4. Schematic showing the three major components of the parallel UEDGE code as 

replicated on each domain or processor. 

FIG. 5. Comparison of time to reach a steady state solution for the parallel UEDGE run 

on the T3E-600 parallel computer with 1 processor and 16 processors for the plasma 

equations with PVODE. The point labeled X uses the PVBBDPRE preconditioner and 

the + point uses the internal UEDGE preconditioner. The table gives the number 

of function evaluations, preconditioner evaluations, and the normalized time to steady 

state. 

FIG. 6. Time step allowed in BOUT over the course of a time dependent simulation show- 

ing the improvement obtained with new Krylov solver PVODE (or CVODE on serial 

computers) compared to the previously-used functional iteration method. 

FIG. 7. Comparison of speed of parallel BOUT run on the LLNL SUN Wildfire system with 

16 processors per machine. Only poloidal decomposition is used with no preconditioner. 

The drop from 15 to 30 processors is due to needed to run between two computers; may 

be due to slowing message passing or non-optimization of scheduling. 
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FIG. 8. Comparison of speed of BOUT runs with various numbers of processors on the 

NERSC CRAY T3E-900. Only poloidal decomposition is used with no preconditioner. 

The super-linear behavior, or off-set linear curve, is likely caused by better utilization 

of fast cache memory at for a large number of processors. 
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